IR signal recorder with Arduino Uno

I’ve been tinkering with IR and the TSOP38238 IR receiver modules I got from Adafruit and Sparkfun. That’s right, plural, as I burned the first one — be REALLY sure not to mix ground and VCC with this one! I ordered 10 more from AliExpress just to make sure I have spares in case I burn my second one as well…

There are IR libraries for Arduino already, but they were a bit complex to my taste, as I’m first planning just to record one IR code from my bulky Sony projector remote and make a small trinket to send that on button press. The TSOP382 already demodulates the signal, so I just want to record the times the remote IR led is on, off, on, off, and so on. So I made an Arduino sketch to do just that: Count loop cycles, detect when signal goes from high (no IR signal detected) to low and vice versa:
Continue reading IR signal recorder with Arduino Uno

USB Mouse with ATmega32U4 Pro Micro Clone and LUFA

I have spent a fair amount of time with 8-bit AVR microcontrollers and one of the cooler things has been the V-USB library which implements low-speed USB with clever (and very time-critical) bit-banging. The popularity of my USB tutorials is a testament to its usefulness, and I’ve gotten lots of mileage out of that.

There are, however, some limitations to software USB with such a low spec microcontroller. USB communication hogs up the MCU completely during USB communication, which means you lose dozens of microseconds in random (or in many cases 8 ms) intervals. This rules out things like software UART at reasonable speeds (which I discovered when trying to implement MIDI on Adafruit Trinket). And more powerful ATmega328-based dev boards like Pro Trinket start to get quite large.

ProMicro on a breadboard

Not so with this tiny beauty shown in the image. It’s a ATmega32U4 based board, where the U4 means it has hardware USB support. The form factor is extremely compact 12 pin header length, which leaves 5 rows free on the smallest prototyping breadboards. That means you can have a DIP8 component with a few resistors on the same breadboard (such as a 6N137 optocoupler which is nice for MIDI… ;).

And the best part is, that because the chip is flashed with same firmware used in Arduino Leonardo (and a largely matching pinout), you can use Arduino for programming, and avrdude supports it out of the box.

Actually, scratch the above statement. The best part is the price. The board is based on Sparkfun Pro Micro 16 MHz, but it’s actually a Chinese clone, which you can get for $4 via DealExtreme and from quite many places in AliExpress: Just search for ATmega32U4 and they will come up. This means you can just order five and solder them into whatever project you’ll make permanently. And unlike Arduino Micro (for which clones exist as well), this has the micro-USB port already in place.

Using Pro Micro without Arduino IDE

Now you can just follow SparkFun’s instructions on how to use that thing on Arduino (short version: select Leonardo as board type, and look up the schematic if you are unsure which pins are connected to LEDs, etc.). But if you’re like me and want to get to raw metal, avr-gcc and avrdude is the way to go. Here’s a simple blinky demo:
Continue reading USB Mouse with ATmega32U4 Pro Micro Clone and LUFA

MIDI to USB Adapter with Teensy LC

Among my recent electronics purchase spree was the amazing Teensy LC from PJRC. It has a nice ARM Cortex-M0+ processor, real hardware USB, and what’s the nicest part, an Arduino add-on called Teensyduino which enables easy programming with Arduino, but with support for many of the hardware features.

Now I started playing piano a while ago, and just a few weeks ago bought a Pianoteq license to send notes via MIDI to my computer, and render high quality piano sound to speakers. However, it turns out my $8 USB-MIDI adapter from DealExtreme had a less than perfect implementation, essentially changing pedal events into “note on” events!

Thankfully, I had a MIDI connector and a high-speed optocoupler at hand, and with these I could implement a MIDI in rather easily. After some investigation with Arduino Uno, it seemed quite simple to receive the serial MIDI bytes and dump them over Arduino serial (I’ll write another post about this later).

However, Arduino cannot become a USB MIDI device very easily, so here comes the really nice part: Teensy LC can, and the Teensyduino add-on included a working USB MIDI and also serial MIDI libraries!

The Hardware

The Wikipedia page for MIDI essentially shows the required circuitry for receiving MIDI data – wire the DIN cable pins 4 and 5 through the receiving side of optocoupler and put a 200 ohm resistor in series with it. A diode is also suggested for reverse current (ESD) protection, but I skipped that. You can start with a LED instead of optocoupler to see it lights up if you’re unsure you have pins 4 and 5 the right way. Or just put the LED (with a resistor) on the other side of the optocoupler first.

The HCPL-2531 I had at hand requires an additional VCC connection on the sending side. After some experimentation, a 4k7 ohm pullup resistor between VCC and VO1 (NPN-transistor base?) gave the cleanest signal out. The wiring diagram (thanks Diptrace!) is shown below:

Teensy LC MIDI schematic
Continue reading MIDI to USB Adapter with Teensy LC

Adafruit Trinket USB keyboard without Arduino

Happy New Year 2016! After a long hiatus in electronics, I have been quite busy in the last month or so. I have a bigger (USB MIDI related) project posting coming up, but just wanted share a small nugget already.

I ordered a big chunk of things recently from Adafruit shop and Sparkfun. Among them was the lovely Adafruit Trinket (which actually came as a free bonus because I spent way too much on black friday :).

Now I am planning a project which involves transforming the very compact, but already USB-enabled Trinket into a USB MIDI device. However, there are two problems:

  1. Adafruit examples for USB come in Arduino form
  2. There are no USB MIDI examples

I somewhat dislike the high-level Arduino environment in cases where low-level performance is needed (and the V-USB implementation is one of those places), and for my later MIDI part, I will need fine-grained control to juggle serial communication and USB. Also, all USB MIDI examples are on “bare metal”, so the Adafruit example Arduino code would require deeper knowledge of Arduino inner workings than I have.

Time to do some chopping!

Slimming Down the TrinketKeyboard Example

I decided to adapt the excellent base code in Adafruit Trinket USB GitHub repository, but trim the keyboard example to bare essentials (my next step will be to transform it into a USB MIDI device, so the less code I have to adapt, the better). Turns out this was quite simple to do:
Continue reading Adafruit Trinket USB keyboard without Arduino

Turning PC On with a Knock Using ATtiny45 and a Piezoelectric Sensor

PS/2 with ATtiny45

Today’s post is something I’ve prepared for a long time. Hardware-wise it’s a simple thing – ATtiny45 emulating a PS/2 device, sending a keypress when three knocks are detected in the attached piezoelectric sensor (or piezo buzzer as they are also called). But if your computer can boot on PS/2 keyboard input and you have your computer stowed somewhere hard to reach (or just want to impress your friends), it’s a pretty neat little gadget! Here’s a video of it in action:

My PC takes a few seconds to put anything on display, but if you look at the bottom right corner, you can see the blue power LEDs light up immediately after the knocks.

What You’ll Need

Hardware-wise this hack is super simple. You’ll need less than $10 in parts and many probably already have these lying around:

  • ATtiny45. Actually, any ATtiny or ATmega with 4kB or more flash, A/D converter and two timers will work with small adjustments, and with -Os -DMINIMAL compiler flags also 2kB MCUs (ATtiny2313 doesn’t have a A/D but you can either work around it or use a button)
  • Piezo buzzer and 1 Mohm resistor to act as knock sensor
  • PS/2 connector, or alternatively a passive USB-PS/2 adapter (I have half a dozen from old keyboards and mice) and USB cable (like the one I used in my V-USB tutorial)
  • Breadboard and wire. Alternatively you can solder it on a simple PCB like I eventually did.
  • Optionally, a 4k7 ohm pullup resistor for RESET line, and a LED and 330 ohm resistor to indicate state

The Schematic and Breadboard Setup


The PS/2 part as discussed in my minimal PS/2 keyboard post doesn’t require any other hardware than the ATtiny. The piezo element uses a 1 Mohm resistor like in the Arduino Knock Sensor tutorial, providing a path for voltage level to get back to zero over time. The LED is connected to PB4.

The PS/2 connector also provides power to the device. Instead of soldering a custom PS/2 connector for the project, I took a passive USB-PS/2 adapter I had lying around and used a multimeter to find out which USB pins correspond to the PS/2 ones. Not surprisingly, PS/2 GND and VCC are connected to USB GND and VCC. In my adapters, PS/2 clock was connected to D+ and data to D-. You can see the mnemonic printout I made on that one below, as well as one possible breadboard configuration.
Continue reading Turning PC On with a Knock Using ATtiny45 and a Piezoelectric Sensor

Arduino PS/2 Keyboard Tester

Arduino PS/2 tester

Once I got my minimal AVR PS/2 keyboard device built, it quickly became apparent that such a device should be able to respond to rudimentary PS/2 commands if I would like to avoid irritating errors in BIOS and O/S side.

After spending a couple of educating evenings with my PicoScope (the only device I had at hand that could capture several seconds of PS/2 traffic at 100 kHz or more to make sure I detect each individual level change) and trying to understand bit-level PS/2 signals (I’ll maybe do a short post on that effort later), I decided it would be too complicated for debugging my own wanna-be PS/2 compliant device. So I decided to implement a simple PS/2 tester sketch with Arduino.

Basic Arduino Setup

There is already a great Arduino/Teensy library called PS2keyboard that had done most of the thinking work for me – the core of the library is an interrupt routine that is called automatically when the Arduino detects falling edge (logic level going from HIGH to LOW) on the clock pin. In Arduino Uno, pin 3 is attached to INT1, and setting up the interrupt is very simple:

#define CLOCK_PIN_INT 1 // Pin 3 attached to INT1 in Uno
// ...
attachInterrupt(CLOCK_PIN_INT, ps2int_read, FALLING);

Continue reading Arduino PS/2 Keyboard Tester

PiSerial Arduino Communication Library

RGB LED demo

As a continuation to my Raspberry Pi and Arduino communication post, I thought I’d do the same but opposite way. This time, I thought it would be nice to make a proper Arduino library to make the process more streamlined.

To make communication more robust, I decided to implement a more formal communication over serial to enable applications that have some idea if a command sent to Arduino was successfully carried out or not, and also introduce basic error recovery if invalid commands or wrong number of parameters are received.

If you haven’t worked with Arduino libraries before, I suggest you to familiarize yourself with this basic tutorial or the other one at Arduino Playground. If you’re not familiar with AnalogWrite(), a quick peek to Arduino PWM Tutorial may also be in order.

Serial communication protocol

I wanted to make a simple formal protocol to send commands and hex, byte or word-sized parameters related to that command over serial line to the Arduino. For the protocol, I had these requirements:

  1. Text-based, so communication can be emulated with Arduino IDE’s “Serial Monitor” tool
  2. Size-efficient to speed up communications with slow baud rates
  3. Support for at least a few dozen commands and free number of parameters
  4. Success and error messages from Arduino
  5. Capability to return to known state after invalid commands, invalid number of arguments, communication errors or breakdowns

After some consideration, I chose to select non-overlapping sets of symbols from the ASCII character set for commands, parameters, control characters and success/error messages:

  • Small letters (a-z) for commands (26 should be enough for everyone, right?)
  • Numbers 0-9 and capital letters A-F to send parameters as hex-encoded values
  • Newline to mark end of command and parameters (either ‘\r’ + ‘\n’ or just ‘\n’)
  • Capital letters O, K, and R for success (OK) and error (RR) indications

With non-overlapping characters used for different things, detecting errors in sent commands becomes easier, as any “non-expected” character marks an error situation and as status messages OK and RR do not appear in commands, implementing two-way communication (commands to both directions) is easy later on.
Continue reading PiSerial Arduino Communication Library

Raspberry Pi as Arduino HDMI Shield

Arduino to Pi serial link

Merry Christmas to everyone! Today’s hack is something that I’ve been planning to try out for a while: Using the Raspberry Pi as a (relatively inexpensive) “HDMI shield” for the Arduino microcontroller. While the Pi can easily do most things that the Arduino can and usually much more, one might have an otherwise complete project (for example, something related to home theater automation) that would benefit from HDMI output.

Arduino display shields are not the least expensive, so why not use a RaspPi instead? There have been hacks for using RaspPi as network shield, too, and this project is very much like it (actually, you could change the Pi-side code just a bit and have some network-related commands available for your Arduino in no time).

The basic hardware premise for this hack is very straightforward – wire the Pi and Arduino together using the serial interface available on both. Because Pi is 3.3V and Arduino 5V, a level converter is needed – I used one from Adafruit this time, as it’s dead simple to use and doesn’t pose the dangers of overloading Pi like my simple resistor option does (you might, however, check that link out as it contains the pinouts for RaspPi serial pins in the GPIO header).

On software side, the Pi acts as a “server”, taking simple display commands via serial link. You could even start the Pi server script and connect to the serial port with Putty, and the session could look a bit like the following:

# initialize viewport - not actually implemented yet
init 500 500
# draw a 10x10 rectangle at (5,15)
draw 5 15 10 10
# exit the server

The python server uses pyserial for serial communications, currently at 9600 bps, but the Pi and Arduino should be able to do 115 200 as well. For graphics, pygame framework is used. Current version of code initializes a 500×500 pixel graphics viewport, but one could use the parameters given by “init” command from Arduino side to define that, too. The code should be rather straightforward to understand: there are only two supported commands, “draw” with four parameters, and “quit” to exit the otherwise infinite loop waiting for draw commands (I named the file

#!/usr/bin/env python

import serial
import string
import pygame

ser = serial.Serial("/dev/ttyAMA0",9600)

window = pygame.display.set_mode((500, 500))
colour = pygame.Color("blue")

quit = False

while not quit:
	line = ser.readline()
	words = line.split()

	if words[0] == "rect":
		pygame.draw.rect(window, colour, (int(words[1]), 
                                 int(words[2]), int(words[3]), int(words[4])))
	elif words[0] == "exit":
		quit = True


Continue reading Raspberry Pi as Arduino HDMI Shield

Arduino and Raspberry Pi Serial Communication

Today’s the last day of my summer holiday, and I had some free time on my hands. So I decided to see if I could get my Arduino Uno and Raspberry Pi to talk to each other. It turned out the task was even easier than my previous Pi to RS-232 project – all that was needed between the two devices was some jumper wire and two 1 kOhm resistors to form a voltage divider between Arduino TX pin and Pi RX pin – Arduino understands Pi’s 3.3V signal levels just fine so Pi TX to Arduino RX needed no voltage shifting at all.

IMPORTANT UPDATE! It turns out that the RX pin on the Arduino is held at 5V even when that pin is not initialized. I suspect it is due to the fact that the Arduino is programmed via these same pins every time you flash it from Arduino IDE, and there are external (weak) pullups to keep the lines to 5V at other times. So the method described below may be risky – I suggest either add a resistor in series to the RX pin, or use a proper level converter (see this post for details how to accomplish that). And if you do try the method below, never connect the Pi to Arduino RX pin before you have already flashed the program to Arduino, otherwise you may end up with a damaged Pi!!!

Setting Raspberry Pi up for serial communications

In order to use the Pi’s serial port for anything else than as a console, you first need to disable getty (the program that displays login seen) by commenting the serial line out of Pi’s /etc/inittab:

1:2345:respawn:/sbin/getty 115200 tty1
# Line below commented out
# 2:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100
3:23:respawn:/sbin/getty 115200 tty3
4:23:respawn:/sbin/getty 115200 tty4
5:23:respawn:/sbin/getty 115200 tty5
6:23:respawn:/sbin/getty 115200 tty6

If you don’t want the Pi sending stuff over the serial line when it boots, you can also remove the statements console=ttyAMA0,115200 and kgdboc=ttyAMA0,115200 from /boot/cmdline.txt. You’ll need to reboot the Pi in order for the changes to take effect.
Continue reading Arduino and Raspberry Pi Serial Communication

Using Arduino Uno as ISP

One exciting piece of hardware I received with my Digikey order was an Arduino Uno board (R3). There was conflicting information whether or not it could be used as an ISP (in-system programmer), so I decided to see for myself. It turned out that with just one tweak, I could use the $26 device to program my AVR chips, essentially eliminating the need for a separate ISP such as $22 USBtiny!

This is obviously good news for any beginner with a budget, so I decided to write a short tutorial on how to do it. I used my USB password generator as a guinea pig for this project, so if you have wanted to try that out, this post also doubles as tutorial on how to build it on breadboard (good idea in any case before soldering it anywhere). Read on for details!
Continue reading Using Arduino Uno as ISP