Level Shifting 101

While writing my FAT+SD tutorial, I realized that my projects may soon contain both 3.3 V components like an SD card, and 5.0 V components like LCD displays or a MAX232 UART chip. Considering I only knew how to use resistors as voltage dividers, I decided to learn a bit more about voltage level shifting.

Having netted already two generous donations for this blog, I decided to spend the first one on $10 of components that could do the job, and employ my trusty, although not old, Picoscope 2205 to investage how they perform!

Simple low to high conversion: Flexible logic levels

When interfacing a 3.3V device with an AVR chip running at 5V, it is possible that no shifting is needed when communicating to the AVR chip. For example, the ATtiny13 datasheet specifies input low voltage as anything less than 0.3*VCC (1.5V when VCC=5V) and high as anything more than 0.7*VCC (3.5V when VCC=5V) – the 3.3V might be just enough to be reliably interpreted as “high” in your particular part combo. However, you might still want to consider the alternatives below, just to be sure.

Simple high to low conversion: Voltage dividers

The basic trick for lowering a voltage from, say 5V to 3.3V is to use two resistors in series, connected between the MCU pin and the ground. Because the voltage drop in each is proportional to the ohm value of each resistor, it’s easy to get any voltage between MCU VCC and ground from such a setup.

Basically, V0 = R1 / (R1+R2) * VCC. For example, if your MCU is providing 5V when an output pin is set high, you could have a 2k resistor (R2) and 3k resistor (R1) in series, resulting in 3V between the two resistors – that is because the 2k resistor “consumes” 2/5 of the overall voltage (5V->3V) and 3k resistor 3/5 of the voltage (3V->0V).

To see how it works in reality, I made a voltage divider from two 10k resistors, and measured both the voltage on MCU pin itself (the blue trace) and from between the two resistors (the red trace), when the MCU pin is set to alternate between low and high state 200 000 times a second (a 100 kHz square wave):


Continue reading